Lie Description of Higher Obstructions to Deforming Submanifolds
نویسنده
چکیده
To every morphism χ : L → M of differential graded Lie algebras we associate a functors of artin rings Defχ whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of χ. Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map. Mathematics Subject Classification (2000): 13D10, 14D15.
منابع مشابه
Lie Cylinders and Higher Obstructions to Deforming Submanifolds
To every morphism χ : L → M of differential graded Lie algebras we associate a functors of artin rings Defχ whose tangent and obstruction spaces are respectively the first and second cohomology group of the cylinder of χ. Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifo...
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کاملObstructions to Embeddability into Hyperquadrics and Explicit Examples
We give series of explicit examples of Levi-nondegenerate real-analytic hypersurfaces in complex spaces that are not transversally holomorphically embeddable into hyperquadrics of any dimension. For this, we construct invariants attached to a given hypersurface that serve as obstructions to embeddability. We further study the embeddability problem for real-analytic submanifolds of higher codime...
متن کاملAssociative Submanifolds of a G2 Manifold
We study deformations of associative submanifolds Y 3 ⊂ M of a G2 manifold M . We show that the deformation space can be perturbed to be smooth, and it can be made compact and zero dimensional by constraining it with an additional equation. This allows us to associate local invariants to associative submanifolds of M . The local equations at each associative Y are restrictions of a global equat...
متن کاملAssociative Submanifolds of a G 2 Manifold
We study deformations of associative submanifolds Y 3 ⊂ M 7 of a G 2 manifold M 7. We show that the deformation space can be perturbed to be smooth, and it can be made compact and zero dimensional by constraining it with an additional equation. This allows us to associate local invariants to associative submanifolds of M. The local equations at each associative Y are restrictions of a global eq...
متن کامل